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The Modern Training Paradigm for Big Data

TR

Target Dataset

Source Dataset

Model Finetuning

Big Data Collection Model Pretraining

Pretraining-Finetuning Pipeline @

OPTML

MICHIGAN STATE
UNIVERSITY




Do We Need All the Source Data?

Recent evidence has shown:

* Some source data could make a harmful influence in the downstream
performance.

* Removing specific source classes can improve transfer learning,
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Existing Methods

* Dataset pruning (DP) 1s a well-studied problem for in-domain scenarios:
* clustering-based methods
* influence function-based methods

* training dynamics-based methods

* DP for transfer learning is under-explored

* Brute force-based method: time-consuming and unaffordable
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Open Question !

(DP for transfer learning)

How to efficiently prune source data to obtain a subset, ,

with lossless or improved transfer learning accuracy of
the source model on a target task?
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Conventional DP is NOT Effective for TL!
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Figure 2: Transfer learning accuracy of existing DP methods on
ImageNet at different pruning ratios, where ResNet-101 is the
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In transfer learning,

conventional SOTA DP

methods do NOT yield
significant performance

improvement over random
pruning!

OT Effective for TL!
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Our Proposal

* Rationales behind our proposal:

* Source data similar to downstream data intend to contribute more during the
transfer process;

* The DP for TL method can be viewed as a “voting” process, each target training
data can vote for its most similar source training class;

* A pretrained small model should help us identity which source class is the most
similar to a downstream training data.
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Our Proposal: An Overview
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Efficient Transfer Learning
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Source Dataset Pruning
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Efficient Transfer Learning
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Training Data
of a Downstream Task
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Pretrained Classification
Surrogate Inference
Model Result

Training Data
of a Downstream Task
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Making source data selection a voting
process. The votes for each source class
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Training Data
of a Downstream Task
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Summary on LM & FM

* Surrogate Model can be very small, or even not well-trained,;

* The pruned source dataset can be used for efficiently training much
larger models (100X size);

* The model pretrained on the pruned source dataset can be finetuned on
the downstream task with lossless or even higher performance;
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Experiments Overview

* Transfer learning on 9 datasets on both CNN/ViTs.

* Supervised and Unsupervised methods (MoCo v2/v3);
* DP for adversarial transfer learning;

* Few-shot transfer learning benchmark (VTAB);

* Multi-Task setting;

* Biased-data setting;

* Ablation study:

* Surrogate model size
e Reverse order selection

ﬁ * Feature distribution analysis @
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Take-Away I

LM/FM improves transfer learning
accuracy by identifying ‘winning subsets’
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Results Highlights 11

Table 2: The downstream performance with different source data pruning ratios in the SSL pretraining setting. A
randomly initialized RN-101 is self-supervised pretrained using MOCO V2 on each full/pruned source dataset
and finetuned on the downstream task through LP. The best result in each pruning ratio is marked in bold and
the performance surpassing the unpruned setting (pruning ratio 0%) is highlighted in cyan .

Dataset OxfordPets SUN397 Flowers102
Pruning Ratio | 0% 50% 60% 70% 80% 0% 50% 60% 70%  80% 0% 50% 60% 70% 80%
RANDOM 62.32 6127 59.09 53.75 45.63 45.08 43.54 39.81 82.23 82.60 81.03 80.02
MODERATE 69.26 63.37 6245 6331 5742 4736 4573 45.14 4423 40.82 85.17 8245 81.45 81.69 81.32
GRAND ’ 6442 6334 61.14 56.42 ’ 4572 4558 4524 41.72 ) 82.85 8244 82.14 81.73
FM (ours) 69.92 69.99 70.29 70.21 48.46 48.58 47.90 46.00 85.22 8542 84.37 84.61
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Take-Away 11

FM is effective in both supervised and
unsupervised transfer learning,
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Results Highlights 111

Table 3: Time consumption of LM/FM in Fig.4 to ob-
tain the pretrained model. The reported time consump-
tion covers surrogate model (RN-18) training, LM/FM
dataset pruning, and source model pretraining (RN-101).
Pruning Ratio | 0% 20% 40% 60% 80%

Time 5.4 4.6 35 2.4 1.3
Consumption (h) ’ (15%]) @B5%])) (GB6%])) (76%])
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Take-Away III

FM/LM significantly enhances the
training efficiency.




Potential Applications Related to
Lifelong Learning

* Safety/ Alignment preservation in transfer learning for large CV models
and LLM (large language models).

* How to perform data selection to preserve safety and alignment gained during
pretraining?

* How to pinpoint the data contributing the most to the general safety/alignment
during pretraining?

Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
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https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Adversarial_Robustness_From_Self-Supervised_Pre-Training_to_Fine-Tuning_CVPR_2020_paper.pdf
https://arxiv.org/abs/2310.03693

* ® an a»
LN} -'-
. |. -l--o .
. -
.l. oenen o o
- - -
L4 . O L)
O AR
- . - 0 L
l . 'o o=, e, .'
O A | B ¢’ @
Ve ==t 0 Ny, =
.
R cttelyl
® ® esewe ® -oo-' '
: ‘et "y =
- o o o0 . '-l
= . 20l 00 I=
- -e - o . -
| 0o e = of =’
- '] s ®» ® e s o @
- -' . - - o
- e '- - s @ o
[ ] —d .—' -
-l o o '—o o o am,
---l - o em .
. C ] El ] I M)
. o e . * @
R . "
. 9
.

S\“ r

MICHIGAN STATE
UNIVERSITY

E HYHED
) %ﬁ%j ngiyabonga suksema

Met dank danki
obﬁgadaThank baie dankie

U ZEAFerL| C} -)( Danke schon!
8 obrlgado O U. CHE)

BaaroaaprocTs | gL 5 v—4 graC1as
Crracubi  Duigkuje q ,q tusind tak

S E

1

terima kastih
mesc

D

OPTML



