Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning

Yihua Zhang^{1,*}, Yimeng Zhang^{1,*}, Aochuan Chen^{1,*}, Jinghan Jia¹, Jiancheng Liu¹, Gaowen Liu², Mingyi Hong³, Shiyu Chang⁴, Sijia Liu¹

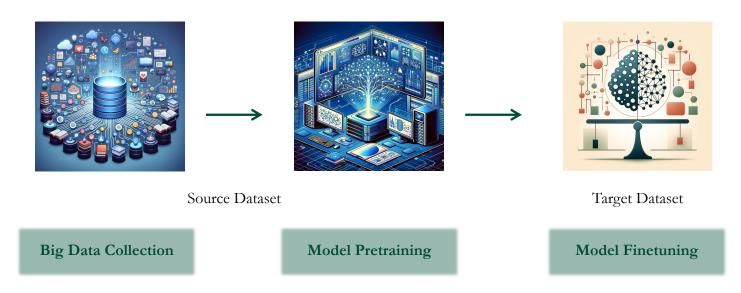
¹Michigan State University, ²Cisco Research,

³University of Minnesota, Twin Cities, ⁴UC Santa Barbara

*Equal contribution

OPTML Group MSU

The Modern Training Paradigm for Big Data



Pretraining-Finetuning Pipeline

Do We Need All the Source Data?

Recent evidence has shown:

- Some source data could make a **harmful** influence in the downstream performance.
- Removing specific source classes can improve transfer learning.

Existing Methods

- Dataset pruning (DP) is a well-studied problem for in-domain scenarios:
 - clustering-based methods
 - influence function-based methods
 - training dynamics-based methods

- DP for transfer learning is under-explored
 - Brute force-based method: time-consuming and unaffordable

• . . .

Open Question

(DP for transfer learning) How to efficiently prune source data to obtain a subset, , with lossless or improved transfer learning accuracy of the source model on a target task?

Conventional DP is NOT Effective for TL!

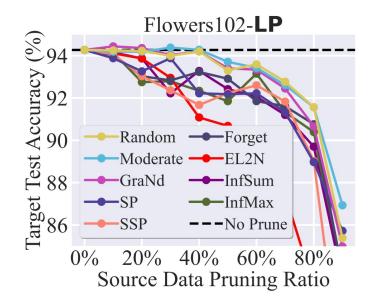


Figure 2: Transfer learning accuracy of existing DP methods on ImageNet at different pruning ratios, where ResNet-101 is the source model

Conventional DP is NOT Effective for TL!

In transfer learning, conventional SOTA DP methods do **NOT** yield significant performance improvement over random pruning!

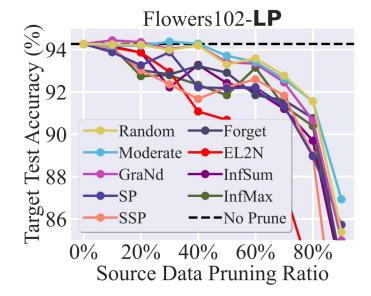
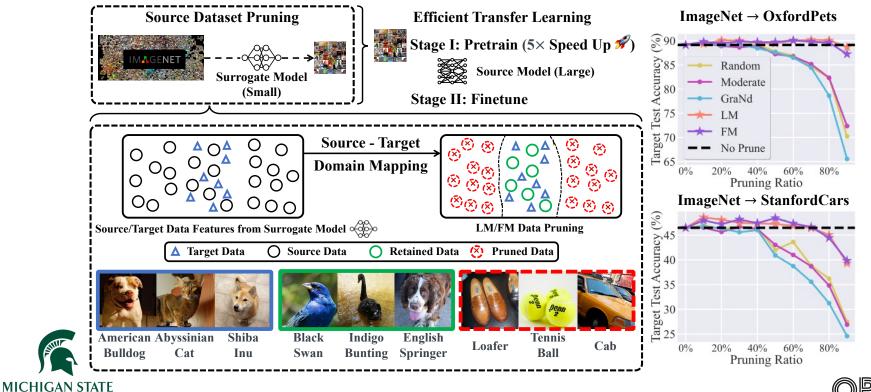


Figure 2: Transfer learning accuracy of existing DP methods on ImageNet at different pruning ratios, where ResNet-101 is the source model

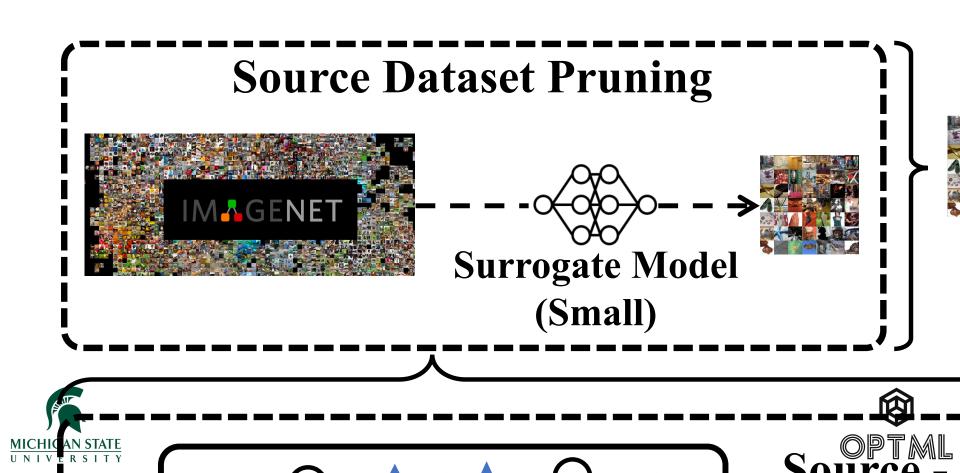
Our Proposal

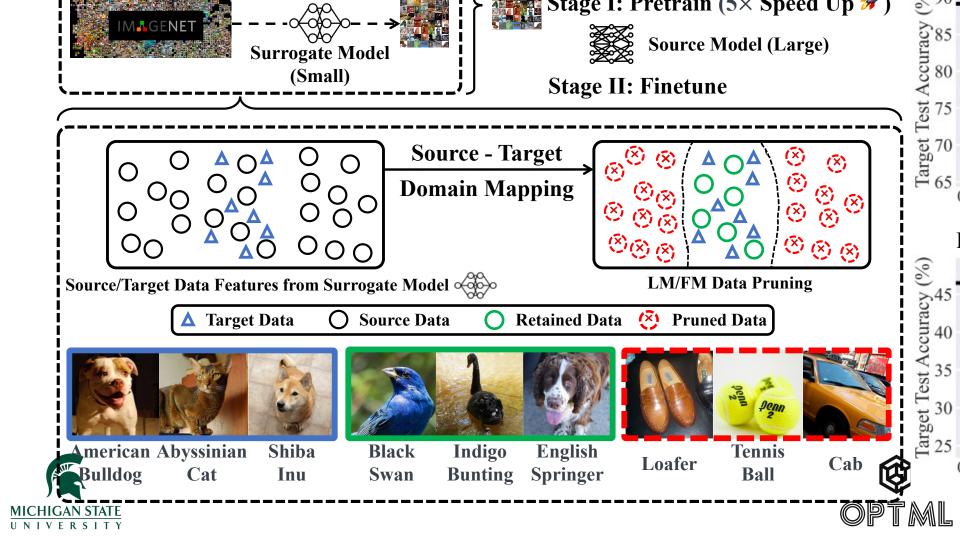
- Rationales behind our proposal:
 - Source data similar to downstream data intend to contribute more during the transfer process;
 - The DP for TL method can be viewed as a "voting" process, each target training data can vote for its most similar source training class;
 - A pretrained small model should help us identify which source class is the most similar to a downstream training data.

Our Proposal: An Overview

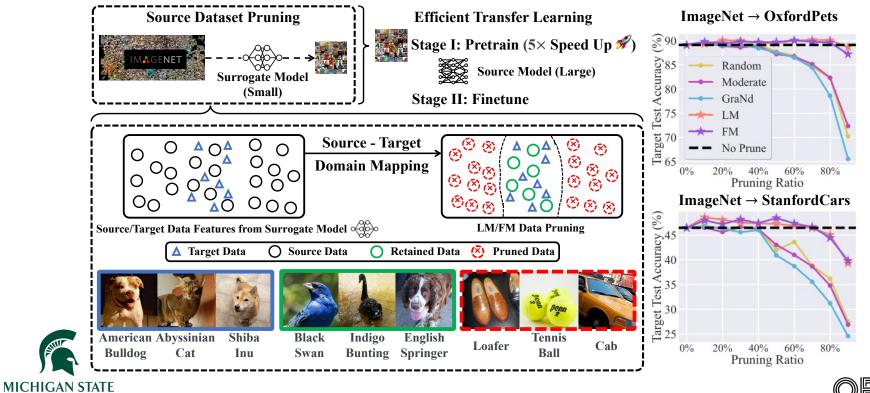


UNIVERSITY



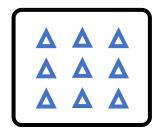


An Overview

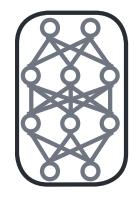


UNIVERSITY

Training Data of a Downstream Task



Pretrained Surrogate Model



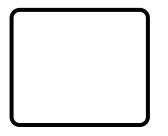
Classification Inference Result

Source Class 1

Source Class 2

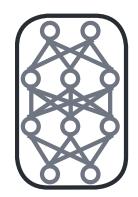
Source Class 3

Training Data of a Downstream Task



MICHIGAN STATE

Pretrained Surrogate Model

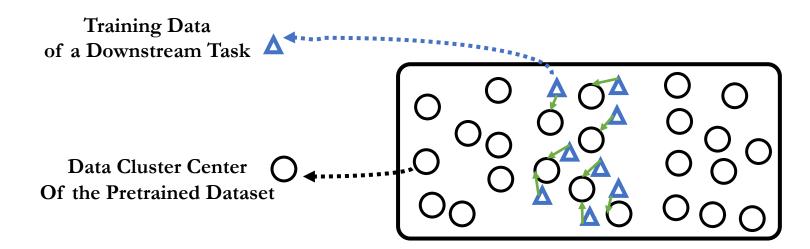


Making source data selection a voting process. The votes for each source class represents its significance. 👍 Source Class 1 (Source Class 2 ΔΔ Source Class 3 👎 Source Class 4 🛛

Classification

Inference

Result



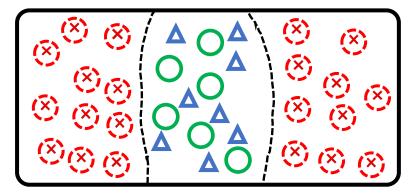
Feature Space of a Surrogate Model

Training Data of a Downstream Task **A**

> Retrained source Data Cluster

Pruned source Data Cluster

 $(\mathbf{\hat{x}})$



Feature Space of a Surrogate Model

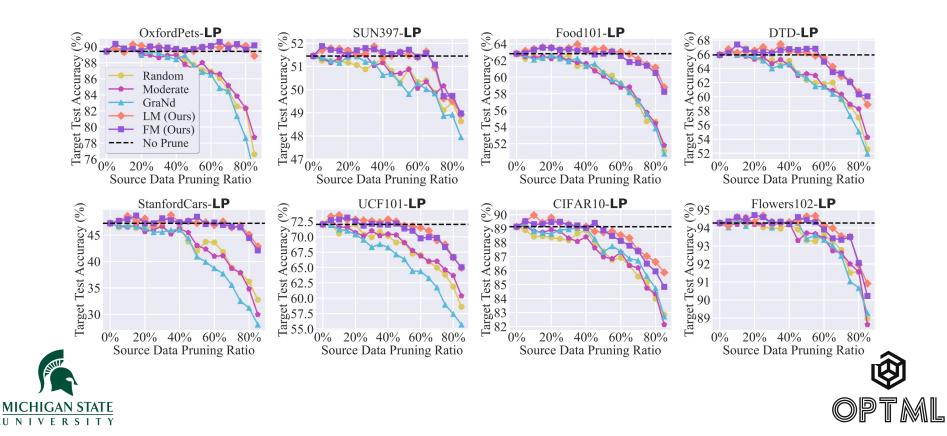
Summary on LM & FM

- Surrogate Model can be very small, or even not well-trained;
- The pruned source dataset can be used for efficiently training much larger models (100× size);
- The model pretrained on the pruned source dataset can be finetuned on the downstream task with lossless or even higher performance;

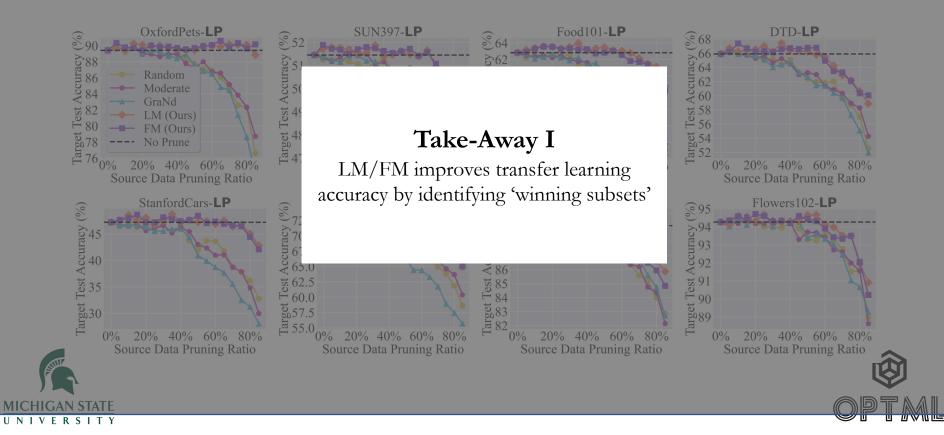
Experiments Overview

- Transfer learning on 9 datasets on both CNN/ViTs.
- Supervised and Unsupervised methods (MoCo v2/v3);
- DP for adversarial transfer learning;
- Few-shot transfer learning benchmark (VTAB);
- Multi-Task setting;
- Biased-data setting;
- Ablation study:
 - Surrogate model size
 - Reverse order selection
 - Feature distribution analysis

Results Highlights I



Results Highlights I



Results Highlights II

Table 2: The downstream performance with different source data pruning ratios in the SSL pretraining setting. A randomly initialized RN-101 is self-supervised pretrained using MOCO v2 on each full/pruned source dataset and finetuned on the downstream task through LP. The best result in each pruning ratio is marked in **bold** and the performance surpassing the unpruned setting (pruning ratio 0%) is highlighted in cyan.

Dataset		C	OxfordPe	ts				SUN397	,			F	lowers10)2	
Pruning Ratio	0%	50%	60%	70%	80%	0%	50%	60%	70%	80%	0%	50%	60%	70%	80%
RANDOM		62.32	61.27	59.09	53.75		45.63	45.08	43.54	39.81		82.23	82.60	81.03	80.02
MODERATE	69.26	63.37	62.45	63.31	57.42	47.36	45.73	45.14	44.23	40.82	85.17	82.45	81.45	81.69	81.32
GRAND	09.20	64.42	63.34	61.14	56.42	47.50	45.72	45.58	45.24	41.72	05.17	82.85	82.44	82.14	81.73
FM (ours)		69.92	69.99	70.29	70.21		48.46	48.58	47.90	46.00		85.22	85.42	84.37	84.61

Results Highlights I

Table 2: The downstream perform randomly initialized RN-101 is s and finetuned on the downstream the performance surpassing the u

Dataset	OxfordP				
Pruning Ratio	0%	50%	60%		
RANDOM		62.32	61.27		
MODERATE	69.26	63.37	62.45		
GRAND		64.42	63.34		
FM (ours)		69.92	69.99		

Take-Away II

FM is effective in both supervised and unsupervised transfer learning.

the SSL pretraining setting. A ch full/pruned source dataset g ratio is marked in **bold** and 1 in cyan.

Flowers102							
50%	60%	70%	80%				
82.23	82.60	81.03	80.02				
82.45	81.45	81.69	81.32				
82.85	82.44	82.14	81.73				
85.22	85.42	84.37	84.61				

Results Highlights III

Table 3: Time consumption of LM/FM in Fig.4 to obtain the pretrained model. The reported time consumption covers surrogate model (RN-18) training, LM/FM dataset pruning, and source model pretraining (RN-101). 0% 20% 40% 60% 80% **Pruning Ratio** 2.4 Time 4.6 3.5 1.3 5.4 (15%↓) Consumption (h) (35%↓) (56%↓) (76%↓)

Results Highlights I

Table 2: The downstream perform randomly initialized RN-101 is s and finetuned on the downstream the performance surpassing the u

Dataset	OxfordP				
Pruning Ratio	0%	50%	60%		
RANDOM		62.32	61.27		
MODERATE	69.26	63.37	62.45		
GRAND		64.42	63.34		
FM (ours)		69.92	69.99		

Take-Away III

FM/LM significantly enhances the training efficiency.

he SSL pretraining setting. A ch full/pruned source dataset g ratio is marked in **bold** and 1 in cyan.

Flowers102						
50%	60%	70%	80%			
82.23	82.60	81.03	80.02			
82.45	81.45	81.69	81.32			
82.85	82.44	82.14	81.73			
85.22	85.42	84.37	84.61			

Potential Applications Related to Lifelong Learning

- Safety/Alignment preservation in transfer learning for large CV models and LLM (large language models).
 - How to perform data selection to preserve safety and alignment gained during pretraining?
 - How to pinpoint the data contributing the most to the general safety/alignment during pretraining?

Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

Paper

